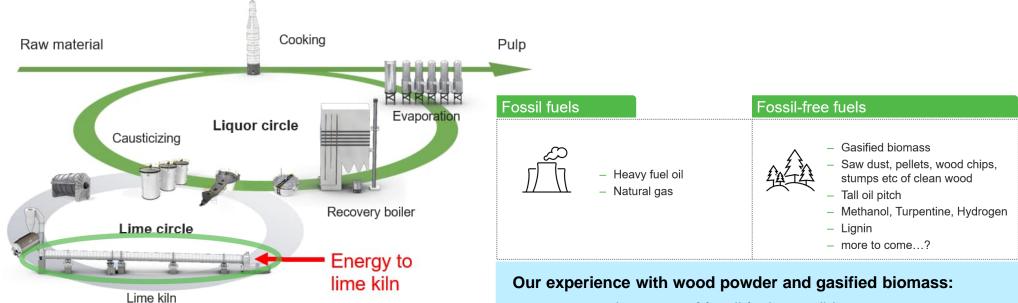


Wood Powder Fuel for Lime Kilns – Replacing Fossil Fuels

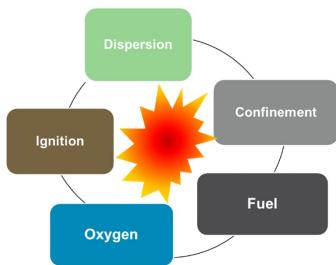

Carsten Jensen, Sales Manager

Copenhagen, Denmark carsten.jensen@valmet.com

Decarbonization of Lime Kilns

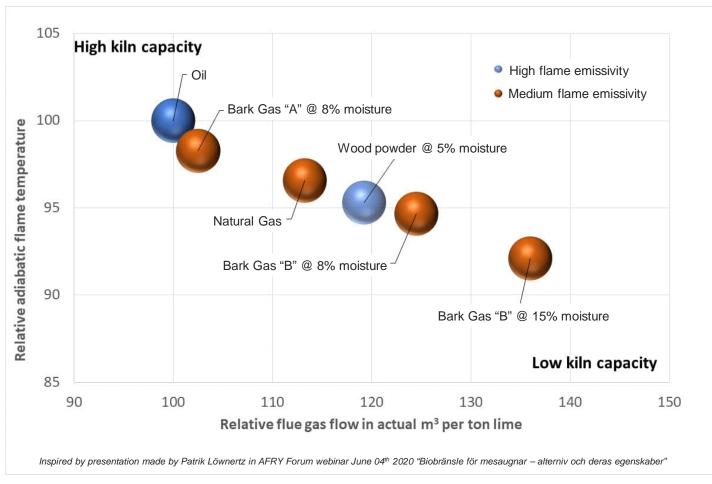
Proven fossil-free fuel solutions for lime kilns

- 100% replacement of fossil fuels possible
- Very good business cases with surplus biomass available
- Biomass quality may have an impact on capacity
- Non-Process Element management is important
- Emissions depend on biomass quality



SAFETY FIRST

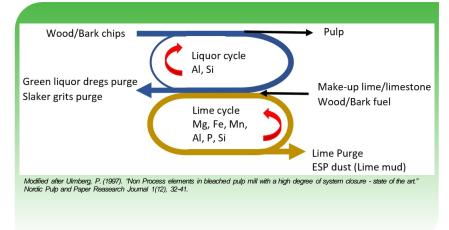
- in particular when substituting fossil fuels with biomass firing

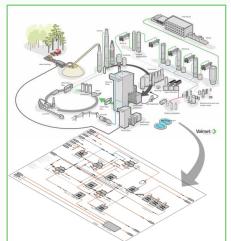

 Wood are combustible biomasses that dried can catch fire, self-ignite and possible explode as powder

- Parameters to characterize risks:
 - K_{st} (bar m/s) maximum rate of explosion pressure rise
 - P_{max} (bar) maximum explosion pressure
- Safety equipments
 - Explosion vents
 - Inertisation (N₂)
 - Spark Detection / water injection
 - Bicarbonate injection
- Keep it Simple = Keep it Safe
- Minimize silo size, buffers, number of conveyors etc where possible

Biomass quality impacts the lime kiln operation Lime kiln capacity of typical fossil-free fuels using oil as reference

Biomass used is important


- · Biomass quality is the key!
- Moisture cools the flame!
- Peak kiln capacity may be reduced using biomass firing
- Nitrogen in biomass is partly converted to fuel-NOx emission


Non-Process Elements in White Liquor plants

Addressing the NPE challenges in your sustainable pulp mill

- Some of the critical NPEs are
 - Mg: Reduces filter capacity and lime mud quality
 - P: Increases deadload in the lime cycle and consumes lime
 - Si: Reduces filter capacity and lime mud quality. Consumes lime

- Need a good lime manegement strategy evaluated by NPE model for the pulp mill
 - Evaluate possible purge sources of NPE.
 - ESP dust purge is a common purge point
 - Phospor is enriched in ESP dust
 - Use good quality makeup limestone or lime
 - Use limestone as gasifier bed material and not dolomite (contains Mg)

Lime kilns fired with wood powder

What you need from dryer to wood powder burner

Biomass dryer

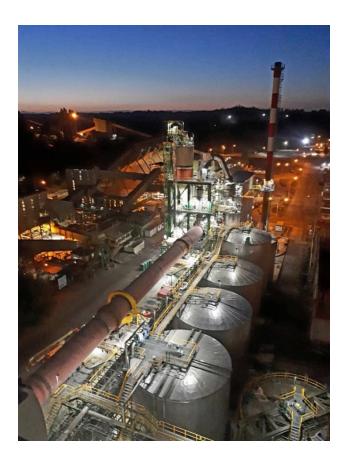
Grinding unit

Gravity feeder & pneumatic dosing

Fossil free pulp mills – Commercially proven solutions to decarbonize Lime Kilns

Biomass drying and gasification

- Biomass used: bark, forest residues, pins & fines
- Suitable for medium to large sized kilns (>30MW)
- Attention on Non-Process Elements in bark
- Very good business case with surplus of bark


Wood powder firing

- Biomass used: saw dust, pellets & wood chips
- Suitable for all kiln sizes
- Very good business case with surplus of clean wood

Wood Powder Design Considerations

- Based on Valmet experience the following design parameters have an impact on wood powder and kiln system performance
 - Type of wood used as fuel
 - Lower Heating Value of wood
 - Moisture content in wood after drying
 - Particle size distribution
 - Burner design

Type of Wood

The following wood material can be used

- Wood Chips
- Saw Dust
- Pellets
- Bark (depending on bark type and NPE content). Limited substitution

Wood chips

- Moisture content can vary, e.g. seasonally
- Saw dust
 - Moisture content can vary
 - Off-spec dimensions

Pellets

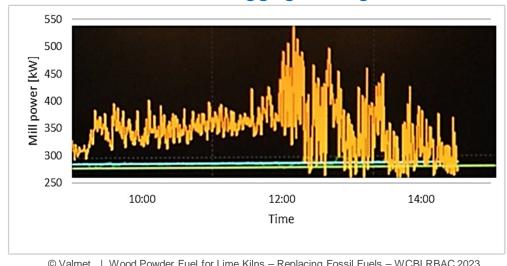
Change of supplier can result in changes in grinded particle size

Particle Size Distribution

Wood Powder Dust:

- Rule of thumb is that 1-2wt.%
 of particles above 1mm is
 acceptable for high intense
 flame formation and complete
 burn-out.
- If material is dry the material can be larger and it will still be possible to achieve burn-out.

After Hammer Mill

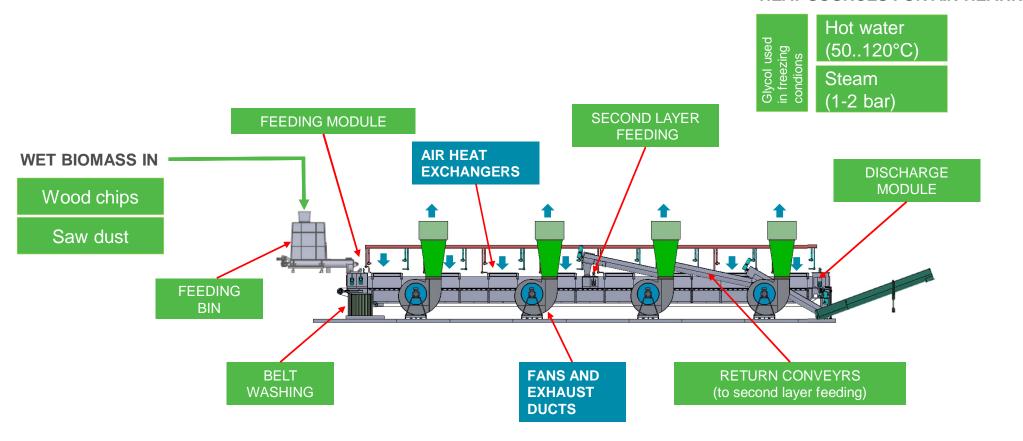


Moisture Content

- To minimize impact on kiln operation when operating on 100% wood the moisture should be less than 8%
- Excess moisture may cause issues with stability of the flame and flame monitoring
 - Similar to burning of methanol with high moisture content
- The lower the moisture the less impact on fuel consumption and kiln peak capacity
- 4-5% moisture in dried wood is ideal

Hammer Mill Screen Pluggage – High Wood Moisture

Wood Drying with Low Temperature Belt Dryer



© Valmet | Wood Powder Fuel for Lime Kilns - Replacing Fossil Fuels - WCBLRBAC 2023

Valmet Biomass Dryer main parts

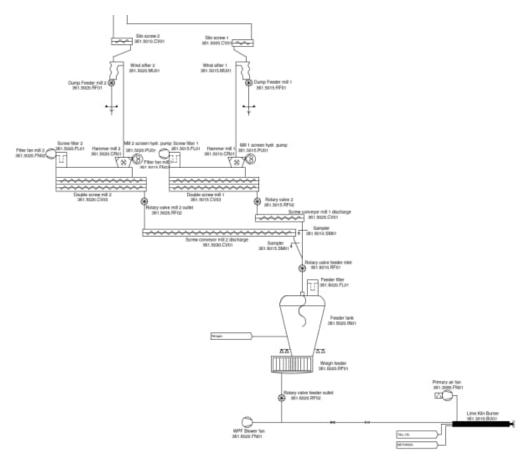
2-layer recirculation dryer design to safely reach lowest moisture

HEAT SOURCES FOR AIR HEATING

Wood Powder Milling - Firing

MILLING

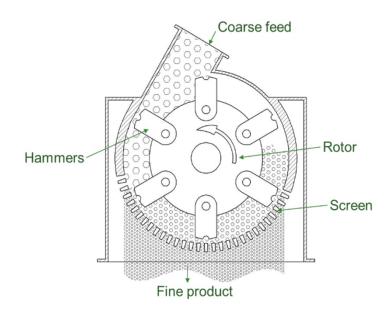
FEEDING


BURNING

OBJECTIVE

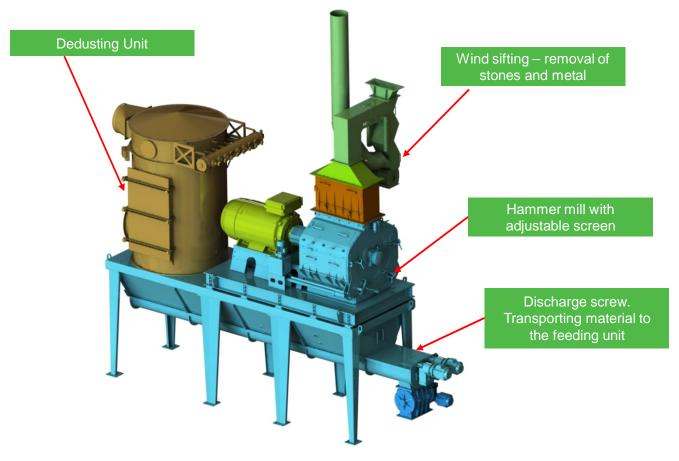
To achieve wood particle size that will allow using it in the kiln.

Wood powder firing – with 2 grinding units Grinding, dosing and burner



Hammer Mill

Hammer Mill Design:


- The hammer will ensure that the wood powder to the kiln has uniform size - 99% less than 1 mm
- The mill consists of a mill grinding chamber wherein a shaft with mounted hammers rotates. The wood particles entering the mill will be subjected to impacts both from the hammers and on the walls of the grinding chamber.
- Hammer mills typically have a screen in the outlet, which together with the speed of the rotor gives control of the product particle size.

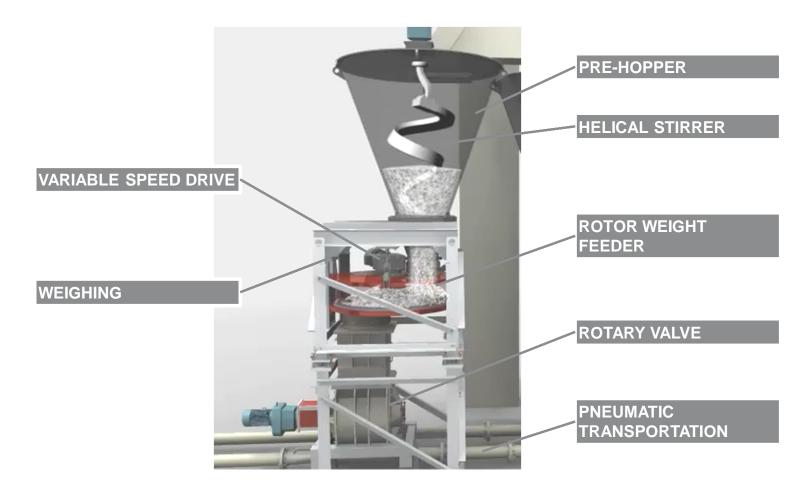
Compact hammer mill solution for wood powder grinding

With integrated dedusting and stone trap

Rotary Weight Feeder

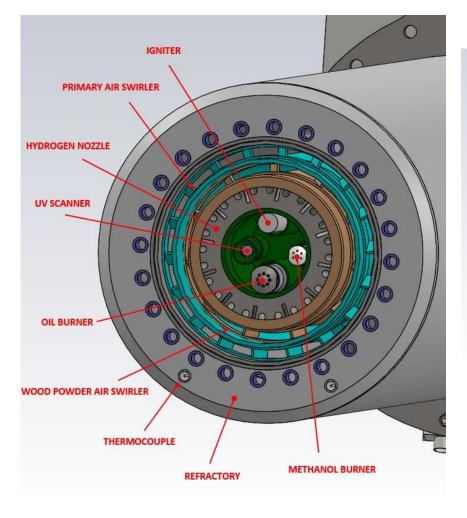
OBJECTIVE

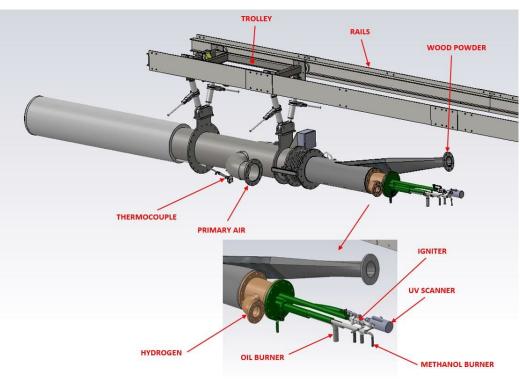
To measure mass flow rate and control the wood powder feed to the burner.


ADVANTAGES

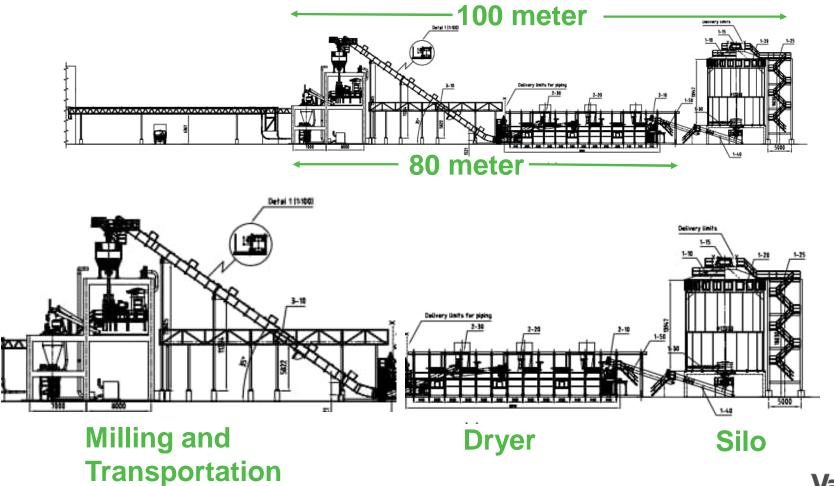
- High fuel accuracy feeding control for safe and low fuel consumption
- Can withstand pressure excursion

Rotary Weight Feeder


Burner Design


- Continued development of burner design for rotary kilns with increased alternative fuel substitution
 - Stable flame
 - High flame momentum for efficient flame radiation
 - Fuel flow stability with a good mix of fuel(s) and combustion air
 - Minimize NOx formation
- Solution: Wood powder swirl and primary air jet nozzles

Burner Design



Wood Powder Layout

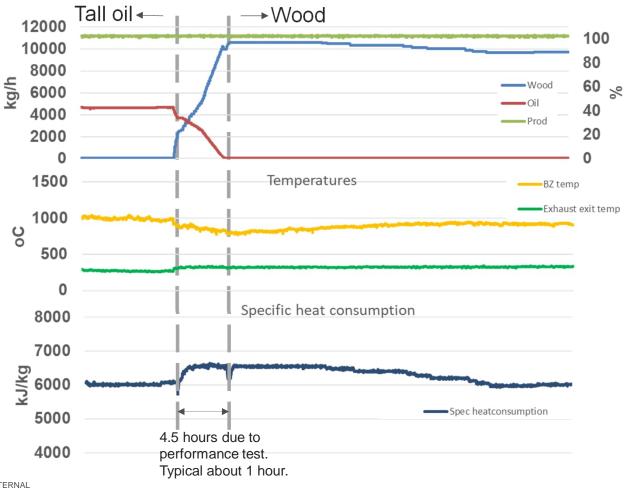
Wood Powder Layout Example

Wood Powder Layout Example

Fossil free lime kiln – wood powder firing

Case: SCA Obbola mill (Sweden), 220 tpd lime with 18 MW wood powder system

Proven technology with significant benefits


- Wood pellets produced from own pellet plant
 - A residual by-product of forestry and industrial operations
 - No special NPE management due to low ash content
- No biomass dryer required using pellets
- Lime kiln wood powder burner for 220 tpd lime
 - Multifuel burner with primary air jet nozzles
- Tall oil pitch as back-up fuel
- Saving 10,000 m³ of oil/year
- CO₂ neutral solution. Reduces CO₂ emission by 20,000 tons/year CO₂

Operating Experience

From 100% tall oil to 100% WPF

Valmet Lime Kiln Wood Powder experience

SCA Obbola, Sweden, 2021

In Operation

Pellet based WPF system - 18MW (220 tpd lime)

Sun Paper Laos, Laos, 2018 In operation

Wood chip based WPF - 33 MW (400 tpd lime)

Dryer evaporation - 7.6 ton/h water

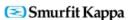
SE Enocell, Finland Laos, 2015 In operation

Saw dust based WPF 50 MW (600 tpd lime)

Dryer evaporation - 14 ton/h water

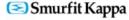
SCA Munksund, Sweden, 2013

In operation


Pellet based WPF - 25 MW (300 tpd lime)

Södra Cell Värö, Sweden, 2012

In operation


Pellet based WPF - 50 MW (680 tpd lime)

Smurffit Kappa Piteå, Sweden, 2006

In operation

Wood powder burner - 16 MW (200 tpd lime)

Smurffit Kappa Piteå, Sweden, 2000

In operation

Wood powder burner - 12 MW (150 tpd lime)

Lessons learned

- Biomass free from metal, stones etc!
- Low moisture content in powder important for good kiln operation. Target 3-5% moisture.
- Powder size < 1-2 mm for efficient burn-out
 - Some % of +2mm particles are ok
 - Pellet strength varies between suppliers
- Reach high turn-down ratio of ~7-100%
- High accuracy weight gravity feeder provides accurate and reliable regulation. Target ± 1wt%
- Pneumatic transport of powder
 - Flexible and can be over long distance
 - Consider pipe design to avoid surges
- Primary air jet nozzles provides a good flame and low NOx emission

Lime kilns fired with gasified biomass

What you need from dryer to kiln gasifier burner using a Circulating Fluid Bed gasifier

Valmet Lime Kiln CFB Gasifier experience

Metsä Fibre Kemi, Finland, 2023 Under construction

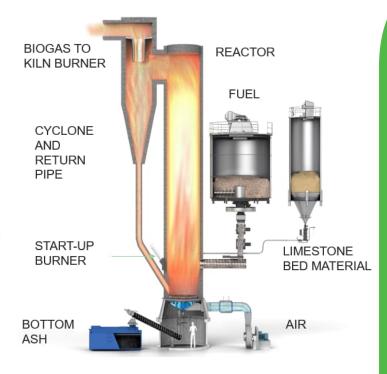
Gasifier 100 MW (1400 tpd lime) Dryer evaporation 32 ton/h water

Bracell STAR, Brasil, 2021 In operation

Gasifier 2 x 87 MW (2 x 1200 tpd lime) Dryer evaporation 2 x 12 ton/h water

Chenming Huanggang, China, 2018 In operation

Gasifier 50 MW (900 tpd lime)
Dryer evaporation 12 ton/h water


Metsä Fibre Äänekoski, Finland, 2017 In operation

Gasifier 87 MW (1200 tpd lime) Dryer evaporation 24 ton/h water

APP OKI, Indonesia, 2017 In operation

Gasifier 2 x 110 MW (2 x 1250 tpd lime) Dryer evaporation 2 x 19 ton/h water

Lessons learned

- Biomass free from metal, stones etc!
- Need homogeneous mix of biomass feed with acceptable ash content
- Low moisture content is critical for good operation (< 8% moisture). Target 5%.
- > CFB operation around 750-800 °C
- Can reach turn-down ratio down to ~40-100%
- Minimum gasifier size ~30 MW
- Primary air jet nozzles in kiln burner provides a good flame and low NOx emission
- Use limestone as gasifier bed material.
 Not dolomite (contains Mg)
- NPE can be managed by ESP dust bleed

